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#14 Abstract: 

We investigated the use of idempotent (e.g., max-plus) algebraic methods for solution of nonlinear 

control problems. The main effort used deterministic infinite time-horizon optimal control problems as 

the vehicle for development of the approach, i.e, we developed the methods for that class of problems 

as a demonstration of the general approach. We obtained a curse-of-dimensionality-free max-plus 

numerical method. Combining this new theory with some convex programming based pruning, we 

demonstrated solution of a particular class on nonlinear problems over six-dimensional space. Standard 

solution methods would take computational time on the order of decades to solve such a problem, 

whereas we were able to obtain a solution in under an hour on a desktop machine for the example 

problem. 

We also investigated sensing UAV tasxing algorithms. We demonstrated that the correct criterion for 

success, expected reduction of troop losses, took the specific form of a piece-wise linear concave 

function over a probability simplex. We further found that this class of problems could also be solved 

efficiently with idempotent methods. This was unexpected, as previously it was believed that one 

needed idempotent linearity of the associated semigroup for application of such techniques. The key 

was found to lie in the idempotent distributive property. 
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1 Introduction 

Multiple breakthroughs were made during the period of the effort. We divide 
them up according to the two main areas. 

2 Curse-of-Dimensionality-Free Methods for 
HJB PDEs 

At the outset of the project, we had the basic algorithm in hand for a curse- 
of-dimensionality-free approach for a class of first-order HJB PDEs where the 
Hamiltonian is written (or approximated) as a pointwise maximum over a 
finite set of quadratic forms. Although the approach is generally applicable 
to such problems, for the purposes of demonstration we needed to choose 
a particular form. We chose the class of HJB PDEs corresponding to infi- 
nite time-horizon, average cost per unit time, deterministic control problems. 
More exactly, we consider HJB PDEs of the form 

0 = H(x,VV)    Vx€J?n\{0}, 

V(0) = 0, 
where 

H(x,p) = max Hm{x,p), 

with M =]1, M[= {1,2 ... M} and 

Hm(x,p) - \x'Dmx + \p'YTp + (Amx)'p + (l?)'x + (l?)'p + am   VmeM. 

Note that the solution is not a piece-wise linear-quadratic function, but is 
fully nonlinear. 

Although, we had an algorithm, we lacked a convergence analysis and 
error bounds. This was necessary for full acceptance of the approach. The 
resulting full analysis is spread across [16] and [15]. In order to give a sense 
of the results we note that at each step, the solution is represented by a 
pointwise maximum of quadratics, i.e., at step N, the approximation is 

VN(x) = 0 Uk
N(x) 

k&Kf 



with each U£ represented by the coefficients of the quadratic, (Q%, x%, c%). 
At the next step, one has an approximation of the form 

®u> (x) 

= 0 0 s? [u?] (*) = 0 ^+1(*)> 

where each semigroup, S™, approximates the action of a single linear-quad- 
ratic control problem associated with Hm. The computations are reduced 
to analytical (modulo a matrix inverse) operations on the set of coefficients. 
The computational growth in space dimension is only n3, as opposed to Dn 

for grid-based methods, where D is the number of grid-points per space 
dimension, and the solution is only obtained over a finite region in the latter 
case. The time-step is r, and the total time propagation at step N is T = NT. 

The errors go to zero as r | 0 and T —► oo. The specific error bounds are as 
follows. For an error on the order of e(l + |x|2) over all of Mn, it is sufficient 
to have r oc e2 and N oc e~3. 

This elimination of the curse-of-dimensionality alone was significant, but 
there was a terrible price to be paid in the above basic algorithm in terms of 
what we call the curse-of-complexity. In particular, Kff = #£# grows like 
MN. However, it was quickly noticed that, in practice, the great majority 
of the quadratics, Uj?, typically contributed little or nothing to the actual 
solution. Various pruning strategies were applied to attenuate this complex- 
ity growth through the elimination of less-valuable quadratics. (Essentially, 
these project the solution onto a lower-dimensional abstract space at each 
step.) However, during a visit with Dr. S. Gaubert at INRIA, we determined 
that certain tools from convex optimization could be applied to radically im- 
prove this pruning process. See [20]. With this tool in hand we demonstrated 
solution of an HJB PDE over all of J?6 with M = 6 in roughly 45 minutes 
on a desktop machine. This would require many years of CPU time with 
standard methods (solving only over a relatively large, but finite, region in 
the latter case). Of course, one cannot depict a solution over 6-dimensional 
space. However, some data along planes is depicted in Figures 1-2. 

The above results require that the Hamiltonian take the form of a maxi- 
mum of quadratic forms. In order to make the approach amenable to general 
nonlinear problems, one must determine a means for approximating a gen- 
eral (semiconvex) Hamiltonian as a maximum of quadratic forms. In order to 



Figure 1: X\ and rr2 partials on the xi,X2 plane 

do this sensibly, one needs to determine a mapping from the approximation 
quality of the Hamiltonian to the resulting error in the solution. This will 
lead us to appropriate approximations of a general Hamiltonian. In [17], [18], 
we demonstrate such a mapping. 

Value-Based Sensor Tasking 

The correct measure for sensor UAV tasking is the expected payoff to the 
warfighters of the possible observational data returns. More typical ap- 
proaches include entropy-based metrics, but these are not correct in the 
sense that they do not represent the actual value of the information to the 
warfighter. For example, one location might be a far more dangerous po- 
tential location for opposing forces to be firing from than another. In [23], 
McEneaney developed an object, VT(q) which describes the minimax, ex- 
pected payoff for a game between Blue and Red at time t as a function of 
the Blue knowledge of the system state, specified as probability distribution 
q. (It is assumed that Red has perfect state information.) 

This object may be used to determine the value of sensing actions. For 



Figure 2: Optimal switching and backsubstitution error on the X\,x<i plane 

discussion purposes, suppose a simple, decomposed problem is given as fol- 
lows. Suppose Blue will choose a sensing control action, ending at time, 
t = T > 0, immediately followed by a combat action. At time, t = 0, Blue 
knowledge is described by go- Given a series of sensing actions, {ut}l=0, there 
is an associated set of possible observations, {yt{ut)}l=0. Note that the yt 

are random variables - the actual observation that will be obtained will be 
corrupted by noise. Given such a set of observations, one may update the 
distribution qo to qT by an estimator such as Bayes rule. Note that qT is a 
random variable. Let the resulting expected payoff assuming optimal future 
troop actions be denoted by V(r,qT). 

Based on an analysis of the combat actions, in the case where the opposing 
force stays fixed in their possibly hidden urban locations, we were able to 
show that this value will always take the form of a pointwise maximum of 
linear functionals over the probability simplex. That is, one has 

^(r. q) — maxfrj. ■ q. 

One also has the usual dynamic programming result that for t € {0,1, T — 



1}. 
V(t,q) = maxVy{V(t+l,ß»*(q))} 

where the expectation is over the set of possible observations. 
Very interestingly, we found that if V(t +1, q) takes the form V(t + 1, q) = 

maxie2<+1 b\+1 ■ q where Jt+i = {1,2,... It+i}. Then, 

V(t, q) = max b\ ■ q 
lot 

where lt = {1,2,... /,}, It = Nu(It+1)
N*, 

y€V 

where (u, {jy}) = A4_1(i), and A4 is a one-to-one, onto mapping from U x 
7>N*(Xt+i) -» Xt (i.e., an indexing of U x ^»(2^.0). Here, Z)(RS/'U) is a 
Bayes rule updater; the linearity is a result of an expectation operation. 
Using this technology, we began solving sensing control problems. A very 
simple example of an optimal path can be seen in the right-hand image of 
Figure 3, where the blue path indicates movement of combat ground forces, 
and the green path indicates the optimal tasking path of a single supporting 
sensor platform. More information on this area of research appears in [25], 
[26]. 

At some later time, we realized the full implication of this result. It was 
that one essentially had a max-plus curse-of-dimensionality-free approach 
to a stochastic control problem. This was entirely unexpected, as it was 
previously believed that max-plus linearity was required for max-plus curse- 
of-dimensionality-free methods. However, in fact, what is actually required is 
quite a bit less. We are now exploring idempotent (max-plus and min-max) 
curse-of-dimensionality-free methods for stochastic control problems and cer- 
tain games. This is the beginning of a new branch of research in application 
of idempotent methods to control, estimation, games and Hamilton-Jacobi 
PDEs; see [11], [12], [13], [14]. 
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